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Recent renormalization-group calculations by Wang et al. predict a strong coupling between the 
hydrodynamic and excluded-volume interactions of polymer chain dynamics in good solvents. The 
predictions were tested here by examining the dependences of the chain expansion factor ratios ~w/~s, ct3/~ 

3 2 • " and ~ / 0 ~ .  on the excluded-volume parameter z m zts large region. Well documented experimental data 
for five polyisoprene samples were available since the samples behaved more like a model of flexible linear 
polymers in dilute solution than does polystyrene. With experimental ~s 3 extending up to a value as large 
as 13, it was found that, contrary to the predictions, ~%a/Cts2~n did not show a constant value, which was 
predicted to be universal, irrespective of polymer species and solvents used, but decreased sharply with 
increasing ~ts a. No draining effect was detected clearly. Rather this experimental trend could be satisfactorily 
compared with the result obtained from simple extrapolation of Ganazzoli et al.'s self-consistent Fourier 
configurational calculation (with non-draining limit) to large ~s. 
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INTRODUCTION 

Discrepancies between experiments and theories on the 
hydrodynamic radius and the intrinsic viscosity in dilute 
polymer solution are a serious but unsolved problem in 
polymer chain dynamics. Applying the renormalization- 
group (RG) method to the pre-averaged Kirkwood- 
Riseman (KR) approximate theory, Wang et al. 1'2 have 
recently examined the influence of draining and excluded 
volume on the dynamic properties of polymers in dilute 
good solution. They have found that the exponents 
describing the molecular-weight dependence of the 
intrinsic viscosity [t/] and the hydrodynamic radius RH 
in good solvents are sensitive functions of the 
hydrodynamic interaction because the hydrodynamic 
interaction couples strongly with the excluded-volume 
interaction. This finding naturally followed the obser- 
vation that the discrepancies 3 found so far between 
experiments and theories in the chain expansion ratios 
~a/~s and ~/~s 3 (= ~/~o, subscript S denotes the radius 
of gyration Rr) may be explainable through the partial 
draining effect. In good solvents these ratios are not 
universal functions of excluded volume alone and rather 
universality should be observed only in the context that 
the ratio ~a/ct2~ a is nearly constant, independent of 
polymer and solvent and of whether the limiting good 
solvent dynamic molecular-weight exponents agree with 
or depart from the naive scaling predictions 3. If this 
finding was consistent with the experimental facts, we 
might be able to draw a clear picture of the polymer 
chain dynamics in dilute solution. In the present paper, 
this RG theory of partial draining is checked through 
experimental data in good solvents for carefully prepared 
monodisperse polyisoprene (PIP). In this case, our very 
recent data 4--6 are effective because ~s and ~n have values 
large enough to find out the draining and excluded- 
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volume effects on polymer dynamics dearly. It is the first 
test of these effects in such large region of ~ts 3 as 13, 
hitherto the maximum being limited to ~ 6. 

SUMMARY OF RENORMALIZATION-GROUP 
THEORY 

The partial draining expression of RG theory to first 
order e is summarized for the expansion factors on [~/] 
and RH in three dimensions as follows1: 

~ = E,d (4,. ;)/E~] ( ~ , . ;  = 0) 

= EH(4n)2¢,/H(~ )] (1 - 132J96 )(1 + 0.2242¢n2~) - 1 

(27rN/A)t2 +,~¢~j,~/16 (1) 

~H = RH(4D,  ( ) / R H ( 4 0 ,  ( = 0 )  

= [H(4D)2¢D/H(®)](1 + 0.0752¢02;)- l(2nN/A)aeD~;/16 

(2) 
~2 = R 2 ( ( ) / R 2 ( (  = 0)= (1 - 132;/96)(2nN/A)~/8 (3) 

H(4) = r (2-  ~/2)/(4- ~¢)1/2r(3/2- ~/2) (4) 

2¢ = 4/(1 + 4) 2~ = (/(1 + () (5) 

4 = (16/315)(f/rr~lJ)(2rrn) ~/2 (6) 

Here ~ is related to the usual draining parameter 
h = [f/(12na)x/2rl,l]n ~/2 withf the  friction coefficient of a 
monomer, n the number of Kuhn units of length l (N = nl) 
and q, the solvent viscosity. The case ~--.~ corresponds 
to the non-draining and 4~0 to the free-draining limits. 
The variable ( describes the crossover between the 
Gaussian ((~0) and self-avoiding ( (~  ~ )  chain regimes 
and is transformed to the excluded-volume parameter z 
(= (3/2n12)3/2flnl/2) with fl the binary cluster integral. A 
is a length that characterizes the excluded-volume 
interaction along the chain. In equations (1) and (2), it 



is assumed that Gaussian chains are non-draining; 
~ , ( (=0)- -}~ and ~o((=0)- -}~ at 19 state. 

Combination of equations (1)-(3) yields: 

ct.a/ct2~tn = (1 + 0.0752;2~)/(1 + 0.2242~2~) (7) 

2 ;=  (32/3)z/[1 + (32/3)z] (z < 0.15) 

X;= 1 (z>0.75) (8) 

on the condition that 2 , = 2  D, which is achieved at 
¢>20-30  since Go = (32/13)¢,. Owing to cancellation of 
ctn/0t s by ~/~3,  the quantity ~/ct2ctn becomes constant 
and independent of the excluded-volume effect at z > 0.75. 
The value depends only on the degree of draining; it has 
the free-draining value 1.0 as its upper bound and has 
the non-draining good-solvent limit value (~ta/~2Ctn)nO,good 
=0.878 as its lower bound. On the other hand, 
complicated crossover behaviour is observed on ~H/~S, 

3 3 ~,/0t s and ~tn/~ . because of the strong coupling between 
the draining and the excluded-volume effects. When 
z >0.75, that is, ~3 > 1.93, the z representation of N, A 
and ( in equations (1)-(3) yields: 

ctn/ot s = [(1 -- 13/96)1/2(1 + 0.075,~¢D)] - tF(,~,~D ) 

x (6.441z)°'ls36('~¢o - x) (9a) 

3 3 ~,/~s = [(1 - 13/96)1/2(1 + 0.2242¢,)] - 1F(2¢.) 

x (6.441z)°'ls36('~¢, - 1) (9b) 

~tn/~ . = (1 + 0.2242~.)1/3[(1 - 13/96)1/3(1 + 0.075).¢D)] - 1 

× F2/3(2¢D)(6.441Z)°'~224(;'¢, - ~) (9c) 

F(2¢) = 31/2H(2¢)2¢/F(3/2) (10) 

and these plots against z produce a family of curves 
having the following non-draining limit values as the 
upper bound: (~tn/~S)nO,sood=l.00, 3 3 (0~ . /0~S)nO,good  = 0.878 
and (~tH/%)nD,goo d = 1.044. 

EXPERIMENTAL 

The methods of characterization for our PIP  samples 
have already been reported in detail 4-6. We give here 
only a brief summary, which will give information about 
degree of data quality. Integrated scattering intensity was 
measured with our laboratory-made computer-operated 
photogoniometer at angles from 5 ° to 150 °. Molecular 
weights and mean-square radius of gyration of the 
samples were usually estimated by the method of 
'square-root plots'. Especially for high-molecular-weight 
samples of Mw > 106, another method proposed by Fujita 
was also used to check the consistency of the R e and M w 
values with those from the square-root plots. The 
scattering intensity autocorrelation function A(z)  was 
measured with our laboratory-made time-interval 
correlator (512 channels) at six fixed scattering angles at 
0= 10  °, 30 °, 60 °, 90 °, 120 ° and 150 °. Translational 
diffusion coefficients at finite polymer concentration D(c) 
were estimated by fitting the A(z)  data in the range 
qRo<0 .4  to a single-exponential decay curve using a 
weighted least-squares algorithm (0= 10°-30 ° for L-14, 
L-12 and L-15, 0 = 1 0  ° for L-11). For  sample L-16, the 
histogram method combined with a weighted non-linear 
least-squares algorithm was applied to A(z)  data at 
0=  10 ° ((qRg)2=0.45). The D(c) values thus estimated 
were linearly extrapolated to zero concentration to obtain 
the diffusion coefficient at infinite dilution Do, which is 
related to the hydrodynamic radius R n through the 
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Einstein-Stokes relation. Viscosity measurements were 
made with a conventional Ubbelohde capillary viscometer 
of shear rate 990 s-  1 for lower-molecular-weight samples. 
For  higher-molecular-weight samples a Cannon-Fenske 
type of four-bulb spiral capillary viscometer (shear rate 
15-105 s -1) was used in order to estimate the intrinsic 
viscosity at zero shear rate. 

RESULTS AND DISCUSSION 

The RG predictions summarized above were checked 
with the data obtained by both us *-6 and Davidson 
et al. 7 for well characterized monodisperse PIP 
( M w / M  . < 1.01) in good solvents. PIP,  a typical rubbery 
polymer, has much higher chain flexibility than 
polystyrene has and shows  4"-6 m o r e  desirable model-like 
behaviour of flexible linear polymers in dilute solution. 
When selecting the data, we set a criterion: for the given 
polymer, the data in both good and O solvents should 
be obtained by the same authors with the same series of 
homologous fractions. This criterion will help to produce 
reliable expansion factors for a given polymer-solvent 
system. The good solvent-® solvent pairs thus selected 
are cyclohexane at 25°C4'6/1,4-dioxane at 34.7°C s'6 and 
cyclohexane at 23 ° and 25°CT/1,4-dioxane at 34°C 8'9. In 
these good solvents, we have the characteristic relations 
that R e =  1.35 x 10-9Mw °'61-+°'°1 cm, Rn=9.03 x 10 -1° 
MwO.61 _+O.Ol cn] and It/] = 1.80 x 10-2Mw 0"74+0"02 c r l l  3 g-  1 
for the former and that R G = 2 . 8 4 x 1 0 - g M , ° 5 4 5 c m ,  
RH= 1.23 x 10-gMw°'SS4cm and [q] =2.05 x 10-2Mw 0'730 
cm a g-1 for the latter. The extremely low exponent on 
R e vs. M w in the latter (Davidson et al. ~) should be 
noticed*. In the present checks, special attention was 
paid to the data at Cts 3 > 4 because they usually show good 
solvent limit-like behaviour at ~3 > 4 and because the 
larger z makes the check more strict. Table I is a summary 
of these checks. 

First we examine Ors 3 dependences 3 2 of ~,/~s~n. This is 
done in Figure 1. Opposed to the RG prediction, %3/~ts2~i~ 
decreases drastically with increasing Cts a, as is represented 
by the data-fitted full curve T, which is drawn with the 
empirical relation 6 3 2 -o.s354 ~,/~s~n = 1.15~ s at Cts a >4.  To 
make matters worse, the values are far below~" the 
theoretical lower bound of non-draining good-solvent 
limit, 0.878 (full line WDF,nD).  Consequently, the 
draining effect makes no sense for the present PIP  data, 
No remarkable cancellation of ct3/~ by ~tn/~ s occurs and 

3 2 the predicted constancy of %/~sCtn at ~3>1.93 is not 
observed on PIP data in the large a s region. These results 
will be assessed later in more detail by discussing 
individual behaviour of 0tn/~t s, ~3/~3 and ~n/~, against ~3. 

As follows, the PIP data compare rather satisfactorily 
with the simple extrapolation of Ganazzoli et al.'s 
calculations 1°'11 to large a s without introducing any 
draining effect to polymer chains. There, the elastic part 

* As described in the experimental section of ref. 7, their Ro values 
were estimated with the Berry method using the scattering intensities 
at angles above 30 ° . However, it is widely accepted that, if the intensities 
were ~ot measured down to below 30 ° for the samples of M > 106, the 
Berry method would give underestimated values of both R G and Mw. 
Taking these into consideration, we can easily obtain a new Ro-Mw 
relation, Ro = 1.71 x 10 -9 M °'ss6 cm, using their data on samples B-H, 
for which M never exceeds 106. This new exponent is very close to 
ours, as was described in the text 
f The larger ct~/~s2~n values in figure I of Davidson et al. 7 might be 
attributed to the low exponent in their Ro vs. M, relation 

POLYMER, 1989, Vol 30, December 2285 



Renormalization-group calculations: Y. Tsunashima 

Table 1 Ratios of chain expansion factors for polyisoprene in cyciohexane 

Sample code M, x 10 -~ =] a 2 

L-14 ° 0.326 4.53 0.707 1.14 1.03 0.622 

L-12 ° 0.568 5.07 0.752 1.13 1.02 0.661 

L-15 * 0.578 4.97 0.768 1.14 1.00 0.681 

L-11" 2.44 8.10 0.651 1.18 1.03 0.551 

L-16 ~ 7.24 12.70 0.554 1.15 1.11 0.482 

PI-II b 0.0620 3.02 0.863 1.31 0.878 0.658 

DSP/GVS-1 b 0.156 3.38 0.931 1.26 0.880 0.742 

PLS-305 b 0.302 3.63 0.942 1.23 0.890 0.768 

PI-12 b 0.581 4.42 0.927 1.23 0.893 0.753 

PI-LFP 0.920 4.17 1.05 1.20 0.874 0.878 

PI-L17 ~ 1.67 4.49 0.995 1.10 0.941 0.907 

DSP/GVS-3 b 3.42 4.93 0.975 1.07 0.966 0.914 

=.b Combinations of good solvent and theta solvent are: (a) cyclohexane at 25°C/1,4-dioxane at 34.7°C4-6; (b) cyclohexane at 23 and 25°C/1,4-dioxane 
at 34°C 7-9 
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Figure 1 The combined expansion ratio e~/~en plotted against the 
'mean-square radius of gyration' expansion ratio ¢~ for polyisoprene 
in cyclohexane: (O) Tsunashima et al.*-6; (A) Davidson et al2 -9. The 
full curve T represents our empirical relation 6 e~/es2en = 1.15es °'sas'* 
at es 3 >4. The full and chain curve GAF represents the results of 
calculations by Ganazzoli et al. ~°'H with non-draining hydrodynamic 
interaction (~ ~< 3.5) and its extrapolation (es 3 > 3.5), respectively. The 
other full horizontal lines, WDF,fD, WDF,nD and WDF,pD represent 
the results of the RG calculations by Wang, Douglas and Freed L2 with 
the free-draining, non-draining and partial draining (2~=0.9) 
hydrodynamic interaction, respectively, for e~ > 1.93 

of the configurational free energy of a perturbed chain 
was decomposed in Fourier normal  modes within the 
Gaussian approximation and the energy was minimized 
over all the degrees of freedom in a self-consistent way. 
With pre-averaged hydrodynamic interaction, the 
expansion factors in the intermediate region of z ~< 2 were 
obtained as follows: 

as = (1 + 67z/7 + 18Z 2 -t- 55Z3) 1/15 

a n = (1 + 4.16z + 3.2z2) 1/1° 

% = ( l + 3 . 6 4 z + 3 . 1 0 z 2 )  u~° (0~<z~<2) (11) 

The equations produce a a_3/as2an vs. as 3 relation. It  is 
shown in Figure I by thin fuh line G A F  at as 3 ~< 3.5. The 
extended chain line at as3>3.5 represents its simple 
extrapolation under the assumption that equation (11) 
holds in this ~s region too. This extrapolation may be 
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Figure 2 The expansion ratio Us/an plotted against Us 3 for polyisoprene 
in cyclohexane. The full line T represents the empirical relation 6 
~S/~H=I.15 at gs3>4. The other lines and symbols have the same 
meaning as in Figure 1 

open to question 12 since the GAF calculation supposes 
the Gaussian distribution for the perturbed interatomic 
mean-square distances. However, its initial trend at 
as 3 < 3.5, which is rigorous within the GAF calculations, 
is of great interest in predicting a downward feature of 

3 2 a,/aSaH with increase of a 3. 
Next, we discuss the behaviour of the constitutive 

elements of a3/as2~i~, i.e. as 3 dependences of ~s/~n, a3/as 3 
and ~I-t/%. Figure 2 shows plots of as/a n against as 3. The 
data indicate a rough constancy, as/all= 1.15, at a 3 > 4  
as shown by the empirical full line T. Theoretically, the 
data can also be represented well by the GAF 
extrapolation curve with non-draining limit. Moreover,  
the data seem to be explainable, for this figure only, with 
the RG theory of partial draining, i.e. with the full curve 
W D F , p D  of the draining parameter  2~ = 0.9. On the other 
hand, plots of a3/as 3 against as 3 in Figure 3 reveal that the 
degree of draining 2~=0.9 (curve WDF,pD)  is not 
sutficient to describe tlae experimental data at large a 3, 
which are represented by the empirical relation 6 
~3/_3 _-0.s354 (curve T). Again, the GAF non-draining ~/~S = US 

curve is relatively closer to the data. Going to the final 
plot, that is, plots of the expansion ratio defined by two 
kinds of dynamic properties aH/a, against as 3 in Figure 4, 
the effect of draining on this ratio becomes unclear to 
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F i g u r e  3 The ratio of the viscosity constant ~/~ts a plotted against %3 
for polyisoprene in cyclohexane. The full curve T represents the 
empirical relation 6 ~t~/Cts a = %-0.8354. The other lines and symbols have 
the same meaning as in Figure I 
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F i g u r e  4 The expansion ratio of two dynamic variables ~n/% plotted 
against gs 3 for polyisoprene in cyclohexane. The full curve T represents 
t h e  empirical relation 6 CtH/%=Ct°'2784/1.15 at gs 3>4. The other lines 
and symbols are the same as in Figure 1 
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some extent. However, the figure indicates that the partial 
draining is inadequate to explain the data in the large % 
region. 

In conclusion, it is found that the data which spread 
up to ~s 3 = 13 do not support the constancy of ~ / ~ H ,  
whose value was predicted from the draining-effect 
sensitive RG theory to be universal, irrespective of 
polymer and solvent. Recently, Shiwa and Oono 13 have 
claimed that the RG theory is not adequate to describe 
the partial draining: the partial draining is describable 
only by introducing into the basic kinetic equation a new 
parameter which characterizes the coupling strength 
between the chain conformation and the solvent velocity 
field. Using the modified KR-RG calculation to order e, 
they have predicted that the ratio [~l]/RG2Rrt becomes a 
true universal function of ~s in the context that it is not 
affected by polymer and solvent. We may need further 
experimental work. 
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